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Agenda 

• Why is this an important problem? 

• Data Civilizer - An end-to-end system 

• Overview of some key components 
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http://visit.crowdflower.com/rs/416-ZBE-142/images/CrowdFlower_DataScienceReport_2016.pdf 
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https://www.forbes.com/sites/gilpress/2016/0

3/23/data-preparation-most-time-consuming-

least-enjoyable-data-science-task-survey-

says 
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http://visit.crowdflower.com/rs/416-ZBE-142/images/CrowdFlower_DataScienceReport_2016.pdf 

– Mark Schreiber (Merck) reports that his data scientists 
spend 98% of their time, i.e. 39 hours/week, in grunt work 
and only 1 hour/week doing the job for which they were 
hired 

– For Big-Data Scientists, ‘Janitor Work’ Is Key Hurdle to 
Insights (The New York Times https://www.nytimes.com/2014/08/18/technology/for-big-data-

scientists-hurdle-to-insights-is-janitor-work.html) 

– Nobody reports less than 80% grunt work 
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We’re building Data Civilizer to help … 

✔discover data of interest from large numbers of 
data sets; 

✔link and enrich relevant data sets;  

✔deduplicate and consolidate the data;  

✔clean the data; and 

✔iterate through these tasks using a workflow 
system. 

 

Algorithms do the grunt work (80% of the pain) while 
data scientists can do what they are good at 

5 
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Clean the data 
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Data Discovery 
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A turn key solution using distributed representation (DR) and deep learning (DL) 

 

• Tuples  high dimensional vectors where (semantically) similar tuples 

have a high (cosine) similarity 

• Using pre-trained DR dictionaries (e.g., GloVe which is trained on a 

corpus of 840B tokens)  no need for manual feature engineering 

• Much less training data 

• Competitive or superior results wrt prior state-of-the-art methods 

• Locality Sensitive Hashing-based blocking  

• automated and semantic blocking based on the entire tuple  

• no need for blocking functions from domain experts 

Entity 

Resolution 
using Deep 

Learning 
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Entity Consolidation 

9 

Cluster duplicates, 
detect matchings and 
group them, and ask a 
human 

From clusters of duplicate records to Golden Records 
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• Rules to detect DMVs with special 
patterns, e.g., strings with repeated 
substrings 
 

• Outlier detection algorithms 
 

• A fast algorithm for detecting DMVs 
following a missing at random model 

Input
Output
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Directory	Full	Name Office	Location Office	Phone Directory	Title Primary	Title Department	Number

Kimball,	Richard	W 3-269 6172539707 Lecturer Lecturer 65000

Garston,	Matthew	J E23-266 6172534351 Optometrist Optometrist 495000

Gallop,	Sarah	Eusden 11-245 6172530942 Co-Director,	Ofc	of	Government	&	Community	RelatnsCo-Director,	Ofc	of	Government	&	Community	Relatns404500

McLellan,	Kevin 14N-305 6172534771 Administrative	Assistant	II Administrative	Assistant	II 93300

Klein,	Mark NE25-754 6172536796 Principal	Research	Associate Principal	Research	Associate 121920

Quimby,	John	Westlake 56-275 6172533494 Research	Scientist Research	Scientist 151000

Valeri,	Michael	J 56-031 6172537923 Working	Foreman Working	Foreman 591020

Coccoluto,	Joseph E19-127D 6172533023 Maintenance	Mechanic Maintenance	Mechanic 591022

Gao,	Fuquan E53-369 6172534245 IT	Manager IT	Manager 95500

Moore,	Edward	P E18-121 6172536353 Carpenter Carpenter 591022

Finley,	William	T 10-063 6172537923 Machine	Operator	Custodian Machine	Operator	Custodian 591020

Gonzalez,	Henry	E 32-268 6172536034 Office	Assistant	II Office	Assistant	II 67910

Barton,	Paul	I 66-470B 6172536526 Professor Professor 62000

Sprague,	David	M. LL-S2-155 7819815670 SRS	IT/IS	Manager SRS	IT/IS	Manager 310000

Krasko,	Genrich	L 24 9999999999 Research	Affiliate Research	Affiliate 68000

Ducas,	Theodore	W 26-251 6172536830 Research	Affiliate Research	Affiliate 267000

Etingof,	Pavel	I E17-430 6172533669 Professor Professor 154000

Kirtley	Jr,	James	L 10-098 6172532357 Professor Professor 64000

Grosso,	Gabriele 36-36-680C 1001000000 Postdoctoral	Fellow Postdoctoral	Fellow 267000

Franey,	Amber E14-526 6173243649 Administrative	Assistant	I Administrative	Assistant	I 39000

Baladi,	Lara	Ramez E15 8572538398 Lecturer Lecturer 31000

Montgomery,	Daniel 46-5013 6173247334 Technical	Assistant Technical	Assistant 400600

Fernandes	da	Costa	Gomes,	Margarida Research	Affiliate Research	Affiliate 62000

Blair,	Donald E15 9999999999 Research	Affiliate Research	Affiliate 39000

Bedermann,	Aaron	Alan 18-206 6172537237 Postdoctoral	Associate Postdoctoral	Associate 152000

Parastatides,	Rick 1 1111111111 IT	Service	Provider	&	Consumer	Support	EngineerIT	Service	Provider	&	Consumer	Support	Engineer242800

Kefalis,	Megan	K. NE49-2100 6172533408 Senior	Project	Manager,	CPEC Senior	Project	Manager,	CPEC 591100

Shalek,	Alex E25-348A 6173245670 Hermann	L	F	von	Helmholtz	CD	Assistant	ProfessorAssistant	Professor 152000

Mangelsdorf,	Martha EE20-607 6172538729 Editor	in	Chief Editor	in	Chief 121000

Bell,	Ana 32-G885 1111111111 Lecturer Lecturer 64000

Detecting Disguised Missing Values 

10 

DMV in different 

databases 
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The Civilizer Studio – Gluing Things Together 
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Next Steps … 

• Open-source release (ver 0.1) 

 

• Get our technology in as many users’ 

hands as possible 

 

• Run tutorials in Spring 2018 
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 شكرا  

 أسئلة؟

Thank You 

Questions? 


