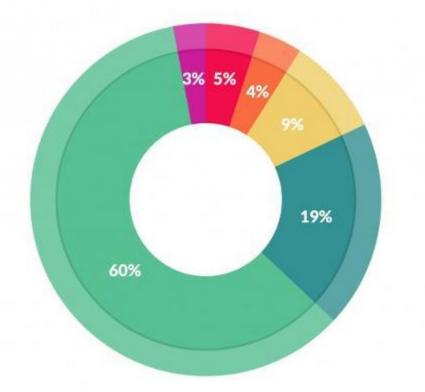


Supporting a Data-Driven World through Data Integration and Data Cleaning

Mourad Ouzzani


ورشة عمل بشان تحديث الإحصاءات الرسمية في دولة قطر Workshop on Modernization of Official Statistics in Qatar

> الاثنين اا ديسمبر ٢٠١٧ – فندق روتانا, سيتي سنتر Monday 11 December, 2017 - Rotana City Center Hotel - Doha

Agenda

- Why is this an important problem?
- Data Civilizer An end-to-end system
- Overview of some key components

What data scientists spend the most time doing

- Building training sets: 3%
- Cleaning and organizing data: 60%
- Collecting data sets; 19%
- Mining data for patterns: 9%
- Refining algorithms: 4%
- Other: 5%

http://visit.crowdflower.com/rs/416-ZBE-142/images/CrowdFlower_DataScienceReport_2016.pdf

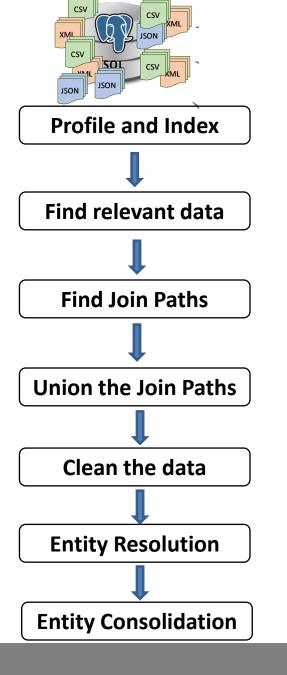
What's the least eniovable part of data science?

- Mark Schreiber (Merck) reports that his data scientists spend 98% of their time, i.e. 39 hours/week, in grunt work and only 1 hour/week doing the job for which they were hired
- For Big-Data Scientists, 'Janitor Work' Is Key Hurdle to Insights (The New York Times https://www.nytimes.com/2014/08/18/technology/for-big-data-

scientists-hurdle-to-insights-is-janitor-work.html

Nobody reports less than 80% grunt work

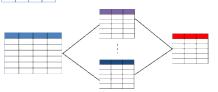
http://visit.crowdflower.com/rs/416-ZBE-142/images/CrowdFlower_DataScienceReport_2016.pdf

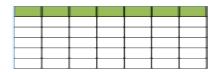


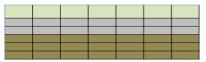
We're building Data Civilizer to help ...

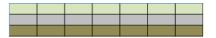
- discover data of interest from large numbers of data sets;
- ✓ link and enrich relevant data sets;
- deduplicate and consolidate the data;
- ✓ clean the data; and
- ✓ iterate through these tasks using a workflow system.

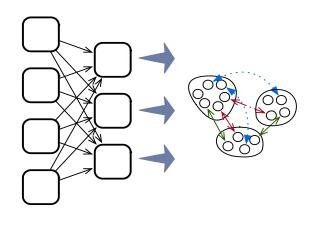
Algorithms do the grunt work (80% of the pain) while data scientists can do what *they* are good at






Enterprise Knowledge Graph





Data Discovery

Profiler Create Summaries

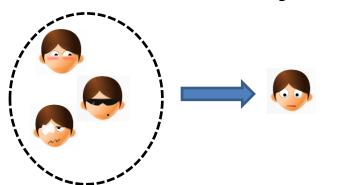
Graph Builder Connect Summaries

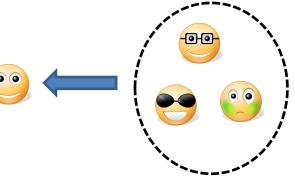
SRQL Query Processing Find relevant data

RAM

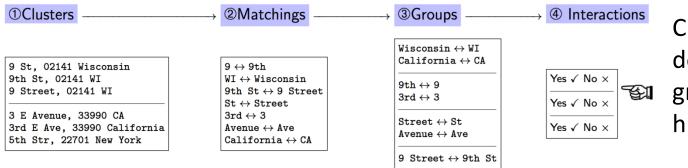
Edge and Hyperedge Indexes

Distributed architecture to scale data summarization Scalable all-pairs comparison of multiple data types Concise in-memory indexes for interactive query answering


Entity Resolution using Deep Learning

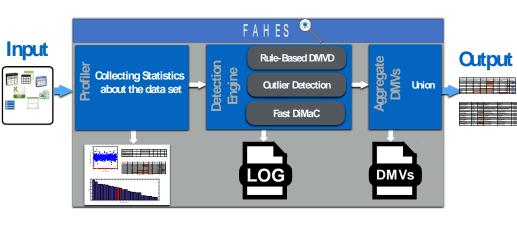

A turn key solution using distributed representation (DR) and deep learning (DL)

- Tuples → high dimensional vectors where (semantically) similar tuples have a high (cosine) similarity
- Using pre-trained DR dictionaries (e.g., GloVe which is trained on a corpus of 840B tokens) → no need for manual feature engineering
- Much less training data
- Competitive or superior results wrt prior state-of-the-art methods
- Locality Sensitive Hashing-based blocking
 - automated and semantic blocking based on the entire tuple
 - no need for blocking functions from domain experts



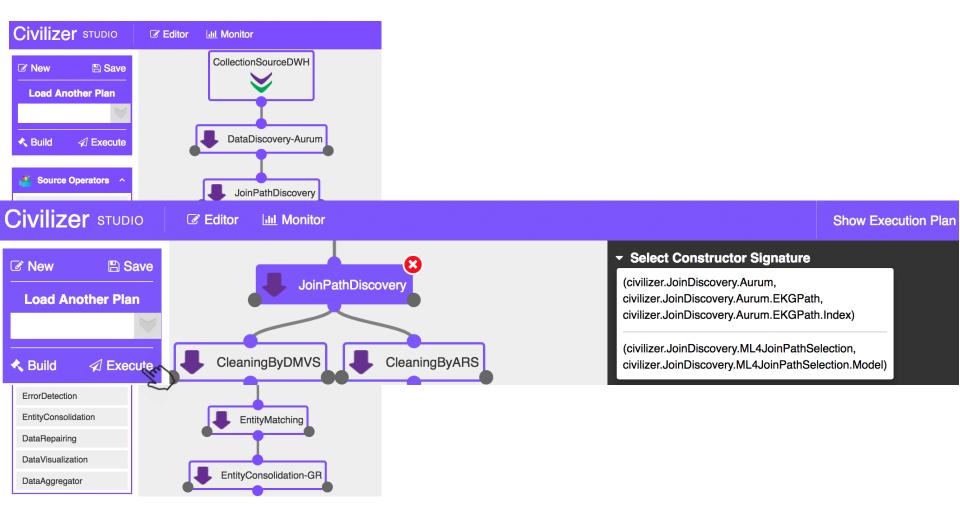
Entity Consolidation

From clusters of duplicate records to Golden Records


Cluster duplicates, detect matchings and group them, and ask a human

Detecting Disguised Missing Values

Source	Table Name	Column Name	DMV	
	Pima Indians Diabetes	Diastolic Blood Pressurs	0	
UCI Machine Learning Repository	adult	workclass	?	
	aduit	education	Some-college	
U.S. Food and Drug	Adverse Event Reporting System	EVENT_DT	20010101, 20030101	
Administration	(AERS)			
data.gov	Alleghency County WIC Vendor	Ref_ID	-1	
	Location			
data.gov	Graduation Outcomes - School	Advanced Regents Num	s, -	
	Level - Classes of 2005 - 2011			
	- SWD			
data.gov.uk	Accidents 2015	Junction Control	-1	


DMV in different databases

- Rules to detect DMVs with special patterns, e.g., strings with repeated substrings
- Outlier detection algorithms
- A fast algorithm for detecting DMVs following a missing at random model

The Civilizer Studio – Gluing Things Together

Next Steps ...

• Open-source release (ver 0.1)

 Get our technology in as many users' hands as possible

• Run tutorials in Spring 2018

Qatar Computing Research Institute

جامعة حمد بن خليفة HAMAD BIN KHALIFA UNIVERSITY

