Enhancing Capacity Development Using Data Science to fill the SDG indicator gaps

Cluster 4: Statistics, Information Society and Technology

- 1. SDGs indicators availability issues and Data science
- 2. Geospatial for measuring SDGs indicators: example
- 3. Data Science for SDGs: methods and example
- 4. Capacity development and regional cooperation
- 5. Conclusion Remarks

1. SDGs indicators availability issues

Map of SDG indicators From ESCWA Portal

Assessment of Goal 1

- Large data gap
- \circ Big budgets to fill the gap
- Data science and big data solutions

Example: the cost of 1.2.2

Type of Survey	Estimated Budget Range	Factors Affecting Costs
Household Income and Expenditure Surveys (HIES)	Hundreds of thousands to several million dollars	Survey scale, frequency, complexity, and sample size
Census Data	Tens of millions to hundreds of millions of dollars	National population size and complexity
Labor Force Surveys	Several hundred thousand to a few million dollars	Sample size and data collection methods
Social and Demographic Surveys	Hundreds of thousands to a few million dollars	Survey scope, sample size, and complexity
National Poverty Surveys	Several hundred thousand to a few million dollars	Survey complexity, coverage, and data collection methods
Administrative Data	Varies; typically, lower compared to dedicated surveys	Data management and reporting requirements
Data from International Organizations	Minimal direct costs	Analysis and integration into national reports

Science and Data science

Science	Data science	
is a systematic way of building and	is a branch of science that deals with	
organizing knowledge in the form of	collecting, cleaning, analyzing and	
testable explanations and predictions.	extracting knowledge and insights	
	from data.	
studies the natural and physical world	studies and analyzes data using	
through experiments , observations	mathematics, statistics, computer	
and measurements .	science and machine learning	
	techniques	

both use the **scientific method** to understand phenomena and solve problems

Data science skills

2. Geospatial for measuring SDGs indicators: example

Geospatial information for measuring SDGs indicartors

Most of the indicators include elements of geography, place, and location.

As data in itself – geospatial data is used directly for the indicator construction (geospatial data = indicator)

✓ Indicator 15.1.1: Forest area as a percentage of total land area

 Support statistical data – geospatial data is used in combination with other data to estimate an indicator (geospatial and other data -> indicator)

✓ Indicator 11.3.1 Ratio of land consumption rate to population growth rate

 Enrich statistical data – geospatial data is used to enrich the indicators, although the indicator does not require a geospatial breakdown (analysis, enrichment of the indicators)

✓ Indicator 6.3.2: Percentage of water bodies with good ambient water quality

- Geospatial data can help in communication and gives possibilities for geographical disaggregation of data:
 - 231 Indicators disaggregated by geographic location, urban/rural, region, etc.
 - Administrative data often come with geospatial information (e.g. address, administrative unit, etc.).

Geospatial information for measuring SDGs indicators

Goal 1 End Poverty	Losses from natural disastersPoverty maps	
Goal 2 Hunger and Food Security	 Crop yield estimates, soil characteristics, crop water productivity, irrigation Nutritional status maps 	
Goal 3 Health and Well-being	Health facility mapsDisease incidence and risk maps	
Goal 4 Education	School facility mapsLiteracy and educational achievement maps	
Goal 6 Water and Sanitation	Water resources, Water qualityFreshwater ecosystems	
Goal 9 Access to Infrastructure	 Water and sanitation access maps Roads, Public transportation Mobility maps Facilities inventories 	

Geospatial information for measuring SDGs indicators

Goal 11 Cities	Access to public green spaceSubstandard housing maps	
Goal 12 Sustainable Consumption	Energy productivity mapsPollution maps	
Goal 13 Combating Climate Change	 CO₂ emissions Exposure to extreme storms and droughts 	
Goal 14 Marine and coastal ecosystems	 Coastal/Marine protected areas Harmful algal blooms Eutrophication 	
Goal 15 Terrestrial ecosystems	 Land cover, land degradation, bio-diversity Protected areas 	
Goal 16 Peaceful and inclusive societies	 Maps of political violence Crime maps Refugee and IDP movement 	

Geospatial information for measuring SDGs indicators: example

Indicator 11.3.1 Ratio of land consumption rate to population growth rate

Data required:

- Population size at 2 different years (census/WPP)
- Built up areas (Census/GI)

Steps:

- Extract built up areas for each measurement year:
- Delimit city boundaries for most recent 4 year: (Geospatial Proc
- Compute land consumption rate based on total built up area within boundary LCR (%) = (LN Urbt+n/Urbt)/(y)
- -Compute population growth rate PGR (%) = LN Popt+n/Popt (y)
- Compute core indicator: LCRPGR = LCR /PGR

3. Data Science for SDGs: methods and example

© Copyright ESCWA. All rights reserved. No part of this presentation in all its property may be used or reproduced in any form without written permission

Data preparation Challenge: The Data Transformation

Data processing challenges: Tool Selection for Dealing with Missing Data

SPSS, Stata, Python, and SAS: Strengths & Limitations

Imputation challenges: Multiple Imputation Methods

Validation of the results challenges: Statistical Test Methods, Comparing Data Distributions, etc

But who will accept and how to adopt

Conclusions

Data preparation Challenge: The Data Transformation

Tool Selection for Dealing with Missing Data

Feature	SPSS	Stata
Imputation Methods	_	+
Data Management	+	_
Estimation and Inference	_	+

Imputation challenges: Multiple Imputation Methods

Imputation Methods

KNN imputation

EM imputation

Multiple imputation by chained equations (MICE)

Validation of the results challenges

MCAR test

Mean test

Stddev test

Distribution test

MSE

4. Capacity development and regional cooperation

Basic concept in big data for official statistics and the SDGs

Enhance capacity of NSOs in the Arab region

Provide solid foundation in fundamental concepts of big data for official statistics

Highlight relevance to SDG implementation and monitoring

Basic concept in big data for official statistics and the SDGs

Workshop 1: Basic Concept in Data Science and Big Data for official statistics and the SDGs

Workshop 2: Data Science and Big data for official statistics and the SDGs with Python

■Workshop 3: Data Science and Big data for official statistics and the SDGs: uses cases

5.Conclusion Remarks

- Technological advances are rapidly transforming National Statistical Offices (NSOs).
- ICT including Geospatial Information Technology, is a cross-cutting technology to help monitoring SDGs
- Modernization of practices in the Arab region is necessary.
- Focus is on capacity building tools such as specialized training programs, collaborative data partnerships, and adoption of data science and technology.
- Approaches enhance capacity development of individuals and institutions to collect, analyze, and report data.
- Harnessing data science empowers stakeholders to bridge information gaps.
- This ensures accurate and comprehensive progress monitoring for a sustainable future.

Thank you